DNA Methylation Profiling of the Fibrinogen Gene Landscape in Human Cells and during Mouse and Zebrafish Development

نویسندگان

  • Silja Vorjohann
  • Jean-Luc Pitetti
  • Serge Nef
  • Carmen Gonelle-Gispert
  • Leo Buhler
  • Richard J. Fish
  • Marguerite Neerman-Arbez
چکیده

The fibrinogen genes FGA, FGB and FGG show coordinated expression in hepatocytes. Understanding the underlying transcriptional regulation may elucidate how their tissue-specific expression is maintained and explain the high variability in fibrinogen blood levels. DNA methylation of CpG-poor gene promoters is dynamic with low methylation correlating with tissue-specific gene expression but its direct effect on gene regulation as well as implications of non-promoter CpG methylation are not clear. Here we compared methylation of CpG sites throughout the fibrinogen gene cluster in human cells and mouse and zebrafish tissues. We observed low DNA methylation of the CpG-poor fibrinogen promoters and of additional regulatory elements (the liver enhancers CNC12 and PFE2) in fibrinogen-expressing samples. In a gene reporter assay, CpG-methylation in the FGA promoter reduced promoter activity, suggesting a repressive function for DNA methylation in the fibrinogen locus. In mouse and zebrafish livers we measured reductions in DNA methylation around fibrinogen genes during development that were preceded by increased fibrinogen expression and tri-methylation of Histone3 lysine4 (H3K4me3) in fibrinogen promoters. Our data support a model where changes in hepatic transcription factor expression and histone modification provide the switch for increased fibrinogen gene expression in the developing liver which is followed by reduction of CpG methylation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

O-7: Improved In Vitro Development of Cloned Bovine Embryos Using S-Adenosylhomocysteine,A Non-Toxic Epigenetic

Background: Development of cloned bovine embryos. Materials and Methods: Oocytes collection,oocyte denudation, oocyte enucleation, nuclear transfer, electrofusion, reconstructed embryo activation, culture of reconstructed and IVF embryo,and treatment with SAH post fusion interval Treatment of reconstructed embryos with TSA for 12 hours after activation, preparation of somatic donor cells, donor...

متن کامل

Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence

The DNA methylation landscape is dynamically patterned during development and distinct methylation patterns distinguish healthy from diseased cells. However, whether tissue-specific methylation patterns are conserved across species is not known. We used comparative methylome analysis of base-resolution DNA methylation profiles from the liver and brain of mouse and zebrafish generated by reduced...

متن کامل

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...

متن کامل

Promoter Methylation and Gene Expression in Human CD34+ Stem Cells Derived Erythroid Lineage by MicroRNA

Background: Stem Cell differentiation is a process composed of vast variety of factors which are controlled by a network of certain mechanisms. This study aims to determine the possible role of DNA methylation, a potent regulator of VHL, ECAD and RUNX3 genes during Erythroid differentiation driven by miR-451. Materials and Methods: To determine the methylation status of promoters and the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013